import sys, re def gcd(a, b): while b != 0: b, a = a % b, b return a def euler(n): result = n p = 2 while p * p <= n: if n % p == 0: while n % p == 0: n //= p result -= result // p p += 1 if n > 1: result -= result // n return result def solve(task): f = re.fullmatch(r'(\d+)x=(\d+)mod(\d+)', task) if f == None: return "Usage Example: py euler.py '7x=8mod13'" a, b, m = int(f.groups()[0]), int(f.groups()[1]), int(f.groups()[2]) d = gcd(a, m) if d > 1 and b % d != 0: return 'No solutions' a1, b1, m1 = a // d, b // d, m // d x0 = (b1 * pow(a1, euler(m1) - 1, m1)) % m1 s='' for i in range(d): s += f"x={(x0 + i * m//d) % m}mod{m}\n" return s[:-1] if __name__ == "__main__": if len(sys.argv) != 2: print("Usage Example: py euler.py '7x=8mod13'") sys.exit(1) print(solve(sys.argv[1]))